PARCIAL 1 CURSO 2014/2015

En la planta de producción de propanol del ejercicio 2 se ha obtenido la siguiente producción total en función del tiempo:

Tiempo(horas)	3	5	15	25	35	50
Cantidad (litros)	8	12	30	35	40	100

- A) Se desea obtener la cantidad producida transcurridas: (a) 4 horas y (b) 40 horas. Para ello, se realizará una interpolación polinómica de Lagrange a trozos formada por un polinomio de grado 3 en el intervalo [3,25] y otro de grado 2 en el intervalo [25,50].
- B) Obtener, para la función del apartado A), la función de base asociada al 40 punto del soporte (25 horas) y representarla gráficamente en forma aproximada.

PARCIAL 1 CURSO 2016/2017

Se han medido los siguientes volúmenes de metanol (CH3OH): 0'25, 0'5, 0'65, 0'75, 0'8 m³ y las siguientes masas en kg: 197'5, 392'5, 514'15, 596'25, 635'2.

Se pide:

- A) (1.25 puntos). Obtener el valor interpolado de la masa de metanol para un volumen de 0'7 m³ y para un volumen de 0'77 m³ empleando para ello una función polinómica a trozos constituida por un polinomio de grado 3 en el intervalo [0'25, 0'75] y otro de grado 1 en el intervalo [0'75,0'8].
- B) (0.25 puntos). Estimar la densidad del metanol a partir de los resultados del apartado anterior.

PARCIAL 1 CURSO 2017/2018

Se han obtenido los siguientes datos de la temperatura a la que se evapora una sustancia química

en función de la presión a la que se encuentra:

Presión (atm)	1	3	4	5	6	
Temperatura (°C)	101	121	152	205	286	

Se pide:

A) Obtener, empleando el método de diferencias divididas, el polinomio interpolador de la función temperatura de evaporación y emplearlo para calcular la temperatura de evaporación cuando la presión es de 3.5 atm.

- B) Obtener y representar gráficamente la función de base para una presión de 4 atmósferas.
- C) Obtener el valor interpolado para una presión de 3.5 atm y para una presión de 5.75 atm empleando para ello una función polinómica constituida por un polinomio de grado 3 en

el intervalo [1, 5] y otro de grado 1 en el intervalo [5,6].

PARCIAL 1 CURSO 2020/2021

En un reactor químico se ha medido la temperatura (T) que se alcanza en 5 posiciones dadas por $x=\{0,1,5,7,10\}$, obteniendo la siguiente tabla:

x (metros)	0	1	5	7	10
T (Kelvin)	280	380	300	294	225

Se pide:

- A) Estimar el valor del flujo calorífico, Φ =-D.T'(x) (siendo T temperatura y T'(x) su derivada), en los puntos x=5.5 y x=7.5; sabiendo que el coeficiente de difusión de calor es D=0.15 m²/s, empleando para ello una función interpoladora que tome como soporte los puntos situados en las posiciones {5,7,10}.
- B) Obtener, y representar gráficamente, la función de base asociada al punto x=10, tomando como soporte {5,7,10} en el intervalo [5,10].

PARCIAL 1 CURSO 2023-2024

Dada la función $f(x)=sen(\pi x)+2$ y el conjunto de puntos $S=\{0, 1/4, 3/2\}$. Se pide:

- a) Obtén, en caso de ser posible, un polinomio de grado estrictamente superior a 2, que interpole, de forma única, a la función f(x) tomando como soporte los puntos que constituyen el conjunto S.
- b) Obtén, en caso de ser posible, un polinomio de grado igual a 2, que interpole, de forma única, a la función f(x) tomando como soporte los puntos que constituyen el conjunto S.
- c) Evalúa el error de interpolación que se comete en el punto: x = 1/3 el polinomio obtenido en el apartado a) ó b).

PARCIAL 1 CURSO 2022-2023

Dada la función $f(x) = \cos(\pi/5) + x^5$ y el conjunto de puntos S={-3, -2, -1, 0, 1, 2}, se pide:

- a) Obtener el polinomio interpolador de f(x) tomando como soporte el conjunto S. Obtener, además, el error que se comete en x=0.5
- b) Obtener la expresión del polinomio de base de Lagrange asociado al punto x=0 y realizar su representación gráfica, tomando como soporte el conjunto S.
- c) Obtener el polinomio interpolador de Lagrange de la función f(x), considerando el soporte $S_1=\{-3, 0, 1, 2\}$ y particularizarlo en x=0.5